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Abstract

The number of wireless access points (such as WiFi and 5G) is

rapidly growing in indoor environments. In this paper, we ask whether

these indoor wireless access points can transfer power to IoT devices

besides their communication capability. In particular, our vision is

that most indoor access points will be underutilized during nights,

and hence, why not use them to transfer power to IoT devices during

those times. To evaluate this idea, we first perform a comprehensive

study on the feasibility of using different frequency bands to trans-

fer power. Our analysis shows that high-frequency signals (such as

mmWave) are the best candidates to transfer power, and have the

potential to power IoT devices up to 15 meters. However, achiev-

ing this requires addressing multiple challenges. In this paper, we

review some of these challenges and propose solutions, enabling

IoT devices to harvest energy from mmWave signals with spending

(almost) zero energy.
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1 Introduction

The number of worldwide Internet of Things (IoT) devices is ex-

pected to grow to more than 29 billion by 2030 [25]. Although this

is exciting, there is a major challenge in deploying IoT devices: their

batterylife. Most today’s IoT devices require their battery to be re-

placed or recharged every couple of months. For example, smart

home sensors such as motion, temperature and moisture sensors

require their battery to be changed every 6 months. Similarly, WiFi

home security cameras require their battery to be recharged every

4 months. Although a batterylife of a few month might seem long
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enough for a device, unfortunately, this would not be the case in a

few years. In particular, considering the fact that the average number

of IoT devices in an American house is expected to reach fifty in

the next few years [10, 26], we would need to change one to two

batteries per week in our homes. Moreover, in many cases, the IoT

sensors are not even in reach, so the battery charging or replacement

requires lots of effort.

In this paper, we ask whether future indoor access points (such as

WiFi or 5G) can transfer power to IoT devices to recharge their bat-

tery and/or significantly increase their batterylife. In particular, we

are interested to learn which frequency bands are the best for trans-

ferring power wirelessly. On one hand, high frequency signals (such

as mmWave bands) experiences greater path loss than low frequency

RF signals (such as WiFi bands). Therefore, at first glance, mmWave

signals may seem unsuitable for transferring power. However, on the

other hand, FCC allows much higher transmission power for indoor

mmWave networks than traditional indoor wireless networks [9].

Moreover, due to small wavelength of mmWave signals, their anten-

nas are tiny [1, 19], and many of them can be packed into a small

area to create high gain antenna to harvest more energy. Therefore,

due to these trade-offs, it is not clear whether low frequency signals

are more suitable than mmWave signals for transferring power or

vice versa.

In this paper, we perform a comprehensive study of these trade-

offs, as well as an end-to-end performance evaluation of using

900 MHz (RFID), 2.4 GHz (WiFi), 5.8 GHz (WiFi), and 28 GHz

(mmWave 5G) signals for transferring power to IoT devices. We

focus our evaluation on the indoor environment such as smart home

or smart factory. Our results show that mmWave bands are much

better candidates for transferring power to IoT devices than lower

frequency wireless signals. However, in order to transfer power to

IoT devices using mmWave signals, we first need to address multiple

challenges. The main challenge is that indoor mmWave access points

and mmWave harvester devices use directional antennas with narrow

beams, and hence, the maximum power is transferred when these

beams are aligned. Moreover, when a node moves, it needs to search

again for the best beam direction. Although past mmWave work has

proposed different approaches and schemes for creating a directional

beam and searching for the best beam direction [3, 6, 13, 14, 23],

they are not practical for our application. This is mainly due to the

fact that existing schemes require phased array antennas. Unfortu-

nately, phased arrays are costly and consume a significant amount

of power which makes them impractical for energy harvesting IoT

devices [2, 20].

To solve this challenge, we propose to use Frequency Scanning

Antenna (FSA) and backscatter technology [7, 21, 28]. In particular,

we develop a directional energy harvesting antenna which is com-

pletely passive while enables the access point to steer the harvester

device’s beam. Furthermore, we propose an efficient and low power
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beam alignment mechanism based on backscatter technology which

enables the access point to align its beam and the harvester device

beam, even when they move.

The contributions of this paper are as follow:

• We study the feasibility of using different indoor signals to

transfer power to IoT devices considering constraints such

as FCC regulations, antenna size, etc. Our results show that

mmWave signals are much better candidates to transfer power

compared to traditional wireless signals such as WiFi and sub-

GHz signals.

• We propose a system architecture and link establishment pro-

tocol for IoT devices to harvest energy from indoor mmWave

access points. Our design is based on passive beamforming

and backscatter technology.

• We evaluate our system in terms of power transfer at different

distances. Our results show that it is possible to harvest 1 mW

and 0.1 mW power at the distances of 7.5 m and 15 m indoors,

respectively. This enables the IoT device to significantly in-

crease their batterylife.

2 Background and Related Work

Existing wireless power transfer systems can be divided to two

types: near-field magnetic coupling and far-field electromagnetic

radiation [5]. Magnetic coupling in wireless power transfer, such

as in smartphone wireless chargers, involves the transmission of

electrical energy between a transmitting coil and a receiving coil

through an oscillating magnetic field. However, despite their high

efficiency, these systems have a very short operating range (i.e. less

than a foot) since the strength of the field falls off inversely with

the cube of the distance from its source. In contrast to the near-field

magnetic coupling approach, the far-field electromagnetic radiation

approach uses RF signals to transfer power between two devices. In

these systems, a charger device transmits a signal using its antenna.

Then user devices receive the signal on their antennas and use har-

vesting circuits to harvest energy. Existing systems mostly operate

at ISM bands such as 900 MHz, 2.4 GHz, 5.8 GHz and mmWave

bands [5, 18]. Given the inherent trade-offs across various frequency

bands in terms of communication distance, antenna size, and power

regulations, there lacks a a comprehensive analysis on which fre-

quency band is best for wireless power transfer. Although there are

a few survey work which discuss the potential and challenges of

higher frequency bands such as mmWave for power transfer [30],

none of them provide a conclusive end-to-end comparison with dif-

ferent frequencies. Moreover, they do not take into account various

parameters such as the FCC regulations, the antenna aperture, and

the power conversion efficiency based on recent hardware advances.

In this workshop paper, we perform a comprehensive study and

an end-to-end performance evaluation of using different frequency

bands for transferring power, while considering practical factors

such as FCC, antenna size, path loss, hardware efficiency, etc.

There are some existing work such as GuRu on power transfer

using mmWave. However, these systems use a fixed beam antenna

on the harvester device [12, 22, 24]. Unfortunately, this approach

is significantly limiting power harvesting efficiency across various

orientations and during mobility. Moreover, these systems require the

harvester device to constantly provide feedback to the access point

using a separate communication module such as Bluetooth or WiFi,

which significantly increase the complexity and power consumption

of the harvesting device. Finally, the authors in [4] proposed a multi-

beam mmWave energy harvester using Rotman Lens and patch

antennas. However, the Rotman Lens has multiple output ports, and

therefore it requires a DC combiner network to combine the power

of all ports. This adds complexity and reduces the efficiency of

the system. In contrast, our design, based on Frequency Scanning

Antenna (FSA), not only creates multiple spatial beams, but also

naturally combines all the power harvested from beamforming via

a single output port. Moreover, we propose a link establishment

protocol based on backscatter communication which enables the

access point to steer the harvester’s beam, and align it toward itself

without any need for a separate module.

3 Which Spectrum Band is the Best for Wireless

Power Transfer?

A typical wireless power transfer system consists of a power trans-

mitter which sends power using radio waves signals and a power

harvester which collects these waves and convert it to DC power

through a rectifier circuit. In this section, we perform an end-to-end

performance evaluation of wireless power transfer system operat-

ing at four different frequency bands: 900 MHz (RFID), 2.4 GHz

(WiFi), 5.8 GHz (WiFi), and 28 GHz (mmWave 5G). Our evaluation

is based on commodity devices which are compliant with Federal

Communications Commission (FCC) regulations. Our goal is to see

whether using mmWave signals have any advantages or disadvan-

tages compared to other signal frequencies.

3.1 Link Budget Parameters

Here, we explain different parameters we consider in our link budget

analysis.

FCC regulation and Transmit Power: We first investigate how

much power a power transmitter can radiate to the air based on FCC

regulation. The total output power radiated in a transmitting direction

is known as the Effective Isotropic Radiated Power (EIRP), which

consists of the transmitter output power and the transmitter’s antenna

gain. The max EIRP at each frequency band is regulated by the

FCC. The max EIRP permitted for 900 MHZ band and indoor WiFi

access points at 2.4 GHz and 5.8 GHz is 36 dBm [9]. At mmWave

frequency of 28 GHz, the max EIRP for indoor access points is 55

dBm [8], the max EIRP for outdoor access point can reach up to 75

dBm [8]. Hence, a transmitter operating at 5G mmWave bands can

radiate almost 20 dB higher power than a transmitter operating at

other frequency bands for indoor scenarios and this number further

increases for outdoor scenarios.

Propagation Path Loss: Next, we compare the propagation path

loss for signals at different frequencies. The equation for calculating

the received power (𝑃𝑟 ) is shown in Eq.( 1), where 𝑃𝑡 is the trans-

mitter output power, 𝐺𝑡 is the gain of the transmitting antenna, 𝐺𝑟

is the gain of the receiving antenna, 𝑑 is the distance between the

transmitter and the receiver, 𝑓 is the signal frequency, and 𝑐 is the

speed of light in vacuum.

𝑃r (𝑑𝐵) = 𝑃t (𝑑𝐵) +𝐺t (𝑑𝐵) +𝐺r (𝑑𝐵) + 20𝑙𝑜𝑔
𝑐

4𝜋 𝑓 𝑑
(1)
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Alternatively, the AP could adopt a time sharing solution to power

each node at a designated time interval.

7 Conclusions

In this paper, we provide a comprehensive feasibility study to show

that future indoor mmWave access points can power up IoT devices.

In fact, our results show that mmWave systems are a better candi-

date for wireless power transfer compared to the systems which use

lower frequency RF signal. However, to enable this vision we need

to address multiple challenges. The most important challenge is to

enable very low power beam alignment architecture and link estab-

lishment for mmWave power transfer. We present mmCharge which

introduces a new system based on frequency scanning technique

and combined it with a backscatter technique to enable IoT devices

to harvest energy from mmWave access point while consuming a

minimum amount of energy. We believe this paper provides the first

step toward enabling future mmWave access points (such as 6G

and 802.11ay) to transfer power to IoT devices besides enabling

connectivity.
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